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To my friend of several decades, D. H. Lenmer 

Abstract. This paper gives a brief survey of methods based mainly on Fermat's 

Theorem, for testing and establishing primality of large integers. It gives an extension of 

the Fermat-Lucas-Lehmer Theorems which allows us to establish primality, or to factor- 

ise composites, in cases where the Carmichael X-exponent is known (or a multiple or sub- 

multiple of it, by a moderate factor). The main part of the paper is concerned with de- 

scribing a method for determining the X-exponent in cases where the Fermat test is not 

satisfied. This method is a variation of A. E. Western's method for finding indices and 

primitive roots, based on congruences N = a + b, where N is the number w4ose ex- 

ponent is required, and both a and b are Ak-numbers, that is, having no factor larger 

than Pk, the kth prime. The most onerous problem lies in the finding of a sufficient 

number of congruences (at least k) and in the choice of a suitable value of k. The 

determination of the approximate number of Ak-splittings available is considered, to 

allow an estimate of the amount of labour (human or electronic) needed to be made. 

The final suggestion, rather inconclusive, is that the method has possibilities worth 

exploring further and may be as economical, after development, as existing methods, and 

possibly more so when N is large. 

1. The proof of primality, or the factorisation, of large integers has been a sub- 
ject of major interest to mathematicians and others for centuries. It always remains 
a difficult problem because any method that becomes available is always pushed 
speedily to its limits. 

The straightforward method for deciding both versions of the problem completely 
is to use the fact that the number N is either a prime, or has a factor not exceeding 

VN. We may therefore try to divide N by each prime up to VN; this eventually 
solves the problem in a number of operations of maximum order VN- slightly less 

if a list of primes is available. If we have no list of primes we can try by using all 

odd numbers, possibly excluding those which themselves have an obvious small factor. 

However the number of operations is still basically of order IN. 

There are other methods, for example involving quadratic forms N = Ax2 + By2, 

x, y integers, that depend on trials with a similar number of operations. 
Such methods, with number of operations of basic order IN, although this may, 

in a particular case of actual factorisation, turn out to be a considerable overestimate, 
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do, in fact, need the full number of operations when proof of primality is the final 
result. They are considered as virtually useless for all except small numbers, or for 
removing small factors, even with a fast computer. The practical limit is perhaps about 
IO1 0-this estimate may be useful for comparison. In fact a method of order V/N 
is hardly regarded as a method at all. 

2. For proof of primality-the worst case for methods of basic order V/N- we 
have a much faster alternative in most cases. This is the use of Fermat's Theorem, 
which states that: 

If N is prime, then 

(2.1) NIaN- 1 

for all a not divisible by N. Alternatively: 
If N is prime, then 

(2.2) NIaN - a 

for all a. 
If (2.1) is satisfied for a particular base a, prime to N, we shall say that N 

satisfies a Fermat Test for base a, or that it satisfies the Fa-test. 
Unfortunately, as it stands, satisfaction by N of either of these test relations 

is not enough to prove primality, since the direct converse of Fermat's Theorem is 
not true. Exceptional integers, N, composite, but satisfying (2.1) or (2.2), exist and 
are of two kinds: 

(i) Poulet Numbers. A number N is defined to be a Poulet number if it is 
composite, but satisfies an F a -test for some a, prime to N. The name is chosen 
because Poulet (1928) produced the first substantial list of P2-numbers, although 
Sarrus seems the first to have reported one in 1819, according to Lehmer (1936). 
Although Poulet's list was confined to base 2, it seems reasonable to extend the name 
to composite numbers satisfying an Fa-test, and to call them Pa-numbers, with the 
general name P-numbers for composite numbers satisfying an F-test for at least one, 
but not all, bases. 

(ii) Garmichael Numbers. A number N is defined to be a Carmichael number 
if it is composite but satisfies 

NIaN -a forall a. 

We see that if (N, a) = 1, then NJaN- 1 - 1. 

Carmichael numbers must have at least three factors, Poulet numbers may have 
only two. Either may have a larger number of factors. 

3. By Fermat's Theorem it is clear that if NtaN-l - 1 for some a prime 
to N, then N is composite. However if, conversely, NIaNl - 1 then, although N 
is probably prime, and with high probability, we cannot be sure that it is not a Poulet 
or a Carmichael number. We need an extended test. 
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Now, there exists a least exponent t for given N, a with (a, N) = 1, such 
that Nlat - 1, and, if N satisfies the Fa-test (2.1), then clearly t IN - 1. Also, if 
N is prime, we know that there exists a base g, such that NlgN- 1 - 1 with N - 1 
at the least exponent, i.e., there exists a primitive root a = g for N. In fact, there 
are several primitive roots, an individual set for each prime N. 

There exists also a least exponent t for N, a, (a, N) = 1, when N is com- 
posite. If N = P1P2, a product of two distinct primes, then 

tILCM(p1 - 1, P2 1) 

and, generally, if N = IHI1p >, &, ? 1, and M = 11 then 

tILCM(NIM, p 1 -1, P2 - 1, **,Ph 1)\( 

Here X(N) is Carmichael's X-function or X-exponent, except that for p1 = 2, 61 = 2, 
an extra factor 2 is needed; this does not concern us, since we always have odd N. 
Note that t depends on a, though X(N) does not. See Carmichael (1914, p. 52). 

A Poulet number or Pa-number occurs when t(a) IN - 1, and a Carmichael 
number occurs when X(N) IN - 1. 

When N is composite, we see that X(N) is always less than N - 1. Thus if 
we can show that N satisfies (2.1) for some a, and N - I is the least exponent, 
N must be prime, that is, N is prime if we can find a prime to N such that 

NIaP- 1 - 1 and Nta(N-1)/Pi - 1 for every piIN. This is the theorem of Lucas; 
see Lehmer (1936). 

4. Lehmer (1933), (1939) analyses the Lucas theorem more closely in his 
Theorem A (1933) and Theorem 1 (1939). We do not quote these, but instead 
combine and extend them to cover X-exponents, and submultiples of X-exponents, 
as well. 

THEOREM. If N has X-exponent X(N), and q' II X(N), q prime, ao > 1, and 
if, further, NIXo, ,3 < a, but N{tXp_1 where X, = aYo - 1, Yo = X(N)/q-, then 
either 

(a) (N, Xd) = 1, and each pritme factor of N is of the form kqt + 1; 
or (b) (N, Xp) : 1, and is a proper factor of N. 

The proof is simple, for = qY,_1, and so 

X; zayP 1= (ayp- - 1) ( kt akYP-1) 

and each prime factor of N, which divides X:, must divide one or other of the 
factors on the right. In case (a) N divides the second factor, and the exponent for 
each of its prime factors has qP as an essential component, whence the first 
conclusion. In case (b) at least one, but not all, of the factors of N divide X,- 
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so that 

(N, X )IN with 1 <(N, X0_1)<N. 

We note particularly that if we test several prime factors q = qi of X(N), we 
can use individual a = ai for each; this is important for the complete factorisation 
of N. 

COROLLARY. Selfridge (see Brillhart and Selfridge (1967)) gives a theorem: 

Let N be an odd integer > 1. If N - = flq, qi prime, and if for each qi 
there exists an ai for which 1 (mod N), but a(N-1)/qi p 1 (mod N), 
then N is prime. 

The Selfridge theorem is just equivalent to a demonstration that N - 1 is the 
least exponent for some primitive root g. This is a if all ai = a, otherwise it is 
unknown. We are, however, mainly interested in factorisation in this paper, and can 
adapt the test, instead, to find the least exponent t for any given a for which (2.1) 
is found to hold. In this case we know that t IN- 1, and we wish to know which 
factors of the exponent 

N 1 = 2"lqa2 quk 

may be omitted, and still leave Nlat' where 

' qi q 2 ... qPk ~'2 q2 qk 

The exponent t is achieved when no single pi, i.e, min p can be reduced without 
destroying divisibility by N. 

5. We now discuss details and economics of this process: 
First we consider as a unit process the evaluation of an (mod N). We write 

n = SI' oy2i, yi =0 or 1, a binary digit. Starting with ro = 1, we evaluate 

ri+ 1 =a IN 2 (mod N). 

The number of digits in each multiplication is set by N; we suppose this has H digits, 
or that it is an h-length machine number, where machine numbers have 1 digits and 
h > H/l > h - 1. Evaluation of ri+ 1 involves two multiplications, and two divisions 
for remainder (mod N). At first sight we are concerned with 2H digit or 2h-length 
products,but by interweaving multilength multiplication and division processes we 
can manage with h + 1 length calculations (virtually h length for h not small). 
Also if yi = 0 (as it will be in about half the cases) there is only one multiplication 
and division per step. Each step involves h-length or H-digit calculations, i.e., 
O(log2N)2 of work. The number of steps is K, which is O(log2n). Thus a unit 
process costs O(log2N)210g2n. 
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Now suppose that we are testing ax (mod N), where 

X = 2 Y1 qa2 ... q?k 

where we know that ax 1 (mod N), and need the least t such that at I 
(mod N). Clearly tIX. We need to evaluate ax (mod N) with each separate factor 

qi' of X used last, in order to find how many factors qi, say qi , are necessary 
to give 1 (mod N) when all other factors needed are present. 

Consider, for illustration, eight factors, A = 2 1, B = qQ2 , C, D, E, F, G, H = 

qQ8 with X = ABCDEFGH. We can develop X and ax by using factors ordered 
as in the following scheme, in which arrows indicate actual calculations 

>A - B - C ->D - E B F >G >H 

H > G 

G >H - E >F 

F - E 

- E B-- F > G > H )A - >B - C > D 

D > C 

C - D > A- B 

B > A 

It will be seen that each letter is used exactly four times, i.e., (1 + log2v) times, 
where v is the number of distinct prime factors, and is, as here, a power 2X. 
Each pair of factors AB, CD, EF, GH comes individually to the right, and is 
individually inverted. To allow for v - 2A +? , we take 2p of the factors as pairs 

Si52 and, when any such pair (treated as a whole unit until then) comes to the 
right, it is inverted, giving two extra units in the count. Thus 2A - , letters occur 
X + 1 times and 2p letters occur X + 2 times, for p < 2X. 

We are, however, less interested in the number of such operations, than in the 
total work. From above estimates, this is 

X'(log2N)210g25, S = A, B, C, D, E, F, G, H, 
s 

with X' = X + 1 or X, X = integer next greater then log2v. This is near log2v x 
(log2N)210g2X since X is the product of all the S. Thus the cost of the operation 
is O((log2N)210g2Xlog2v) or essentially (log2N)3 since X is usually O(N), and 
log2v very small. 

In individual practical cases we can improve things a little further, by splitting 
X into two parts nearly as equal as possible, and doing the same for each part as 
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we progress in the separation into distinct factors. In this way we may have individual 
prime powers at more than two levels of splitting, but we shall have long factors at 
lower levels used less often, and shorter easy factors used more often. 

6. We now indicate how the processes outlined above may be used for factor- 
isation, as well as for proof of primality. 

To test a number N: 
1. Choose a base a, and test whether N is Fa. 
If not, N is composite; - 6. 

If N is Fa ,then it may be prime, or' a Fermat or a Carmichael number; -*2. 
2. Choose another base b, prime to a, and test if N is Fb. 
If not, N is composite; > 6. 

This second test is not likely to succeed as well if N is a Fermat number, but 
will do so if it is a Carmichael number or a prime, If then, N is Fb (not ruling 

out the possibility that it is also a Pb-number); 3 

3. By a method such as that described in Section 5, determine least exponents 

ta ' b for bases a and b. 
If either exponent, or their LCM is N - 1, then N is prime; 5. 

If LCM(Qa, tb) is large, i.e., N - 1 is a small multiple thereof, then N is 

probably prime; 4. 

If LCM is small; > 6. 

4. Try other bases c, d. It is best, but not essential to have a, b, c, d, co- 

prime in pairs. Try until LCM(Qa, tb' d) = N - 1; this would prove that N is 

prime; - 5. 

If the LCM remains persistently <N- 1 (for a Carmichael number it will re- 

main much smaller) we must attempt factorisation; - 6. 

5. N is prime. 

6. N is composite, certainly or very probably. We attempt factorisation. 

To do this there are many methods. We propose a new approach. This is to 

use the exponent X(N) defined in Section 3. 

If one or more F-tests have succeeded we may know enough to achieve factor- 

isation. If not, we must attempt to find the exponent, an outstanding problem in 

number theory of great difficulty in general. We first consider, in Sections 7 and 8, 

how to use the exponent when it is known. Then, from Section 9 onward, we 

consider a possible strategy for finding X(N). 

7. Factorisation of N, When its Greatest Exponent X for any Base a is 

Known. We shall confine ourselves to the case where N is square-free. If this is not 

the case, suppose that 

n h i 

N=JJpii and M=JpIi. 
i=l i=1 
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Then we know that 

1\(N) = LCM(N/M, p -1 P2 ... 'P 0-1) 

We are assuming further that N has no small factors (which are easy to find and remove) 
so that p 1 - 2. In fact we shall assume that N/M and LCM(p1 - 1, P2 - 1, * 'Ph - 1) = Y 
are coprime. It is always best to test for small factors before starting a major comput- 
ing operation. Thus 

12N) =M NY = HIPi Y, 
M i= 1 

P = (N, X(N)) = N/M, M =N/P, 

Next 

Q= (M, X(N))= I P. 
6i>1 

So M/Q is a square-free product of primes occurring only once in N. 
We then proceed with P/Q replacing P, again isolating square-free factors; 

thus R = (P/Q, Q) and QIR gives the product of primes occurring exactly squared 
in N. Continue thus until N is completely analysed into sets of factors appearing 
with equal degree, still to be separated. 

We may now assume that N = H=l~1 pi, a product of odd primes and 

X(N) =LCM(p -1, P2 - 1, ... 
Ph - 1), with (X(N), N)= 1. 

Write X(N) - 29l1q92q93 *. qgk. The prime q1 = 2 is certainly present, as it 
occurs in every pi - 1. Suppose that 

q~i llpi - 1; qgjt Pi, - ,i 

and consider #' = X(N)/qj: Then 

Pi' - IX(N)1qj, i' # i; pi- 1t X(N)Iqj, 

since the last factor qj is needed only for pi - 1. So there does exist a base a 
such that 

at- (mod pi,), i' 4-i, 

at 1 (mod pi). 

So if r, at (mod N) then pi,Ir- 1, i' $ i, pit{r - 1 and we must have 

Pi = N/(N, rt - 1) and pi is isolated. Other factors may be similarly isolated. 
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8. As an example consider N = 12999 63601. This is a Carmichael number 
and we shall assume that we know that X(N) = 3600. We seek the factors. 

We take a = 2 and use factors of 

X(N) = 3600 = 52 32 . 24 

with the initial order as indicated, to evaluate ri = a' (mod N). 

a 2 a = 3 

i ri ri i ri i ri 

1 2 50 1320 52923 1 3 50 -2042 75117 
5 32 100 1363 82527 5 243 100 1190 31680 

25 335 54432 300 1 25 - 2876 58409 300 2338 63525 
75 - 2078 20991 75 - 238 79532 900 1 

!25 2164 80201 12 4096 225 - 2143 17200 
350 86 59209 60 259 78648 450 86 59209 
100 1 300 1 900 1 

Values are given for i = 5, 52 3. 52 32 . 52 2 - 32 - 52 22 32 52 The 

last gives r900 = 1. So 22 only, and not 24, is needed. We test (r4 - 1,N) = 

1082401; the other factor of N is 1201, which can be seen to be prime. 
Now alter the order of the factors (second column-pair above). This shows 

r300 = 1, so the second factor 3 is not needed. Now we check (r100 - 1, N) = 

1082401-again! 
To complete our evaluation of the exponent t for a = 2 we must test rl2 

and r60 (see above); we see then that t = 300 and that (r60 - 1,N) = 1, which 
is no help. 

We now try a = 3 (last two column-pairs above) and find 

(r3OO - 1, N) = 721801, N/721801 = 1801 

from this, without testing further residues, we find N = 601 - 1201 - 1801. These 

are all prime-which has to be checked! 
This example has been streamlined and left incomplete. It has been given in order 

to exhibit the use of penultimate residues. 
In general the order in which factors are used in developing ax is not of prime 

importance. It may, however be worthwhile to suggest that if, for any reason, it is 

suspected that t < N, it is perhaps worthwhile to start with factors of N - 1 (if 

JIN - 1, i.e. if N is Fa) in ascending order, since it is then likely that some of the 
large factors may not be needed at all. Thus, in our example if we had started on fac- 
tors of N- 1 = 24 - 33 - 52 - 13 47 - 197 in that order, we should not have needed 
to use the last three at all. 
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Most cases should yield to treatment of this sort, once the value of A(N) is 
known. It should also be fairly simple if at least one or two Wa are known that are 
not much less than A(N). The difficult case is where just one ta is known, much less 
than A(N), and nothing else. Thus, for example 2101 - I is composite, so that both 
factors and their product have t2 = 101, but it is very hard to find ta for any other 
a, and unless we do, we cannot separate the factors by the method outlined above. 

This brings us to the major problem of this paper: How does one find A(N) 
when it does not divide N - 1? 

9. A. E. Western (Western and Miller, 1968) has devised a method for determining 
indices and primitive roots for modulus a prime, and has found it feasible, even easy, 
for use with primes up to at least 107. It can readily be extended to composite mod- 
uli, and provides the value of A(N) directly, or maybe a moderate multiple of A(N). 

For every N, there exists A(N), the Carmichael exponent. This exponent divides 
the Euler function ?(n), and is equal to it only when N is of the form pa or 2p', 
where p is prime. It may be noted that every prime factor of ?(N) and so of 

k(N)IX(N) is a divisor of A(N), i.e., b(N) contains all and only primes that are factors 
of A(N) possibly to a higher power, maybe much higher, than in A(N). 

For each a prime to N, there is a least exponent Wa such that aba = 1 

(mod N), where ta I(N). There exist values of a such that ta = A(N), these are 
Carmichael's primitive A-roots. If a = g is such a primitive A-root, then gi, i = 

0(1)A, generates, modulo N, A(N) distinct residues ri <N and prime to N, i.e. 
A(N) members of the group of 0(N) such residues. This is the complete group only 
if N = p? or 2p'; the group is then cyclic. Otherwise the group needs more than 
one generator. In this case the first generator, as we may call it, can be chosen to be a 
primitive A-root, with exponent A(N). The other generators will all have exponent 
dividing A(N); that is, A(N) is a period for every generator. 

For a cyclic group, with a single generator g we may use its exponent i as the 
index of the corresponding ri and write i = indg ri (mod N - 1), since gN- 1 = 1, 

and ind gN =indg 1 = 0. In this way as in Western and Miller (1968), a system 
of indices may be used for calculation. 

For groups with several generators, the system can be extended. Each residue r 
can be expressed as g lh 2h 3 * where g, is a primitive A-root, and h2, h3,.. 
the remaining generators. Then ind r is the vector (i1, i2, i3 . 

.. ), and we know 
that A(N) ind r = 0 (mod A(N)) in all cases. In practice, we have to find the least 
multiplier X, for which X ind r = 0 (mod A(N)), or any small multiple of it. 

10. To achieve this, when A(N) is unknown, we work with indices in the manner 
devised by Western. We write 

(10.1) cN=a?b 

which is equivalent to 
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(10.2) ind a = ind(- b) (mod X(N)). 
The pairs (a, b) are very numerous; we need M + 8 relations involving M 

primes, so we need to find those which are products of small primes only. For example, 
with primes to 37, we have 13 indices to deal with (we must include that of - 1), so 
we need 13 identities involving these indices. The extra 8 relations (8 a small integer) 
may be needed to allow for redundancies. We want M = 1, of course, but such a 
relation is too hard to find directly. It is much easier to find relations with large M 
(e.g., M = 10000), but then it is troublesome to reduce them. Western used basically 
m = 12 to 15, with an extra 20 primes or so used sparingly, i.e.,only one to a rela- 
tion. For present day needs with a computer, I estimate that we may need M = 200 
to 300. 

We can reduce the relations found to the form 

(10.3) Xq indq=O (mod X(N)) 

by direct elimination. Then Xq contains all factors of X(N) not in ind q (in practice 
only the primitive element g, of the index is important for our purpose). We need, 
then, some q such that ind q is prime to X(N). With M = 13 we have twelve 
primes, 2 to 37, to work with, and can reduce to form (10.3) for each of them. From 
these, we should be able to obtain, collectively, the complete value of X(N). We should 
certainly be able to get enough values of Sq to complete the factorisation of N as in 
Sections 7, 8. 

A way of achieving all this is exhibited in full detail in the Introduction to Westem 
and Miller (1968). It is true that there it was known that X(N) = N - 1, but this plays 
no part in the finding and reduction of congruences. The final stages, of course, diverge. 

Examples. One or two small illustrations of indices with more than one generator 
may be helpful. 

(i) N= 91 = 7 x 13 O(N) = 6 x 12 = 72 X(N) = LCM(6, 12) = 12 

a 1 2 3 5 6 10 11 12 ..27 29***34 
etc. 

ta 1 12 6 12 12 6 12 6--- 2 3- 4 

We find that 2'30, 0 -< o < 11, 0 < 1B < 5, represents all residues. A list is 
given of indices for primes less than N. 

q a f q a:3 q a c q a q a: q a 1 

1 0 0 11 3 4 29 8 2 43 10 4 61 0 5 79 8 4 
2 1 0 17 2 3 31 1 5 47 11 1 67 9 4 83 9 3 
3 0 1 19 9 5 37 7 0 53 4 2 71 1 4 89 7 3 
5 5 1 23 10 0 41 5 5 59 11 3 73 7 5 

(ii) N-- 105=3 x 5 x 7 O(N)=2 x 4 x 6=48 X(N)=LCM(2,4,6)= 12 

a - I 1 2 4 8 11 13 16 17 19 22 23 26 29 31 32 34 

ta 2 1 12 6 4 6 4 3 12 6 4 12 6 2 6 12 2 
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We find that 2c290(- 1)Y or 2?029034y each cover all residues. 

(iii) For N = 150, ?(N) = 40, X(N) = 20, we find 13a(- 1)0 will serve. 

For N = 210, (N) = 48, X(N) = 12, we find 17c290(- 1)Y will serve. 

11. We come now to the main problem: How do we obtain enough relations 
(10.1) to cover all the factors involved in all our pairs (a, b)? 

There are clearly numerous relations available; the problem is to pick out those 
where all factors are small. Western has described quite fully the way he tackled this 
problem for his particular purpose in Western and Miller (1968), and it is recommended 
that this account be studied. 

A new version will be suggested in this paper, where we expect to have much 
larger numbers N to deal with, though no actual large example will be exhibited; nor 
indeed has one ever been attempted, for it seems that the scale envisaged cannot be 
feasibly tackled without an automatic computer-no computer program has yet been 
compiled for such a job. 

We start with a simple example, to illustrate processes: 
Consider factorisation of N = 91 (we have to ignore deliberately values of a 

and b that are not prime to 91). We seek a = -b (mod N), with all factors of a, 
b small; we use - 1, 2, 3, 5, 11 (five in all) and need five relations-we make it six 
in case a redundancy turns up-a frequent occurrence. We find 

Index coefficients 

N= 91 -1 2 3 5 11 Equation no. 

96-5 253_5 * 5 1 -1 1 

90--1 2 - 325=-1 1 1 2 1 * 2 

88 -3 211--3 1 3 -1 1 3 

81 -10 3 -2.5 1 - 1 4 - 1 * 4 

80--11 245--11 1 4 1 - 1 5 

75 -16 3 52--24 1 -4 1 2 6 

Thus equation 6 is ind(- 1) - 4 ind 2 + ind 3 + 2 ind 5 = 0. This can be written 
as Ai A(i 1 i2 i3 i5il )T = 0, where A is the 6 x 5 matrix of coefficients, 
and i is a vector (or matrix, if more than one generator is involved) of indices 
ind p = ip. Further relations in the elimination process are: 

7=3 +5 (0 7 -1 1 0)i-0 

8=1+ 2 (1 6 3 0 0)i-0 

9= 1 -4 (1 6 -3 0 0)i-0 

10=2 x 1 +6 (1 6 3 0 O)i=O Thisis8 

11=1+7 (0 12 0 0 0)i-0 Thisis 8 +9 

12=8-9 (0 0 6 0 O)i=O 

Note that ind(- 1) is needed only modulo 2, but others must be calculated more 
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carefully. Also 

13=3 x 5 (1 0 0 3 0)i--0 using 11 

14=2 x 3 (1 6 -2 0 2)i=(0 0 1 0 2)i=0 using9 

Thus t2112, 0316, and t5112, and in all probability X(91) = 12. This is easily 
verified, for 212 - I = 4095 = 325 91; also 

26 - 1 = 63 = 32 - 7 and 26 + 1 = 65 = 5 13 

and 121X. We note that the factors of 91 are split. 
Likewise 

36 - 1 = 728 = 23 * 91, 33 - 1 = 26 = 2 - 13, 36=1 = 28 = 22 * 7 

and factors of 91 are again split. 
On the other hand 24 - 1 = 15, 28 + 24 + 1 = 91, so the exponent factor 3 

is needed for both factors of N. Further, 56 - 1 = 2232 - 7 - 31, and 56 + 1 
2 - 13 - 601, and factors of N are again split. 

12. Western uses extensive tables of An-numbers for various n. Here an An- 
number is composite with no factor exceeding the nth prime pn. They suffice for 
finding partitions a + b = N for the numbers with which he had to deal. However, 
his tables, extensive as they are, are not adequate for dealing with much larger N, nor 
are they immediately ready for use on a computer, which will certainly be needed for 
large N. 

I now wish to propose an approach which has not been tested fully, indeed hard- 
ly at all. Nevertheless I hope it may be a first. approximation to a method that might 
be developed during actual experiment and use; there are several available degrees of 
freedom. 

The main time-consuming process is that of testing members of a partition, 
a and b, to pick out An-numbers for a moderately low value of n. Each test is 
quite reasonably limited-only n primes Pr' r < n, for some moderate value of n 
have to be tried, then either a (or b) is completely factorised, or we know it is not 
an An-number. But failures to -find an An-number are frequent, and successes relative- 
ly rare. Nevertheless we need only a moderate number of successes, in fact n, plus a 
small surplus, to anticipate redundant relations, which occur early in a small, but not 
negligible number of cases. We also note that no small factor can occur in both a and 
b, and that the presence of small factors greatly increases the probability of absence of 
large ones greater than Pn. 

The last remark suggests, then, that one element of the pair, say a, be manufac- 
tured, as can easily be done, without the presence of the smaller primes, 2, 3, 5, - - , 
29, for example, and subtracted from the nearest multiple cN of N; the difference 
b must then be tested for factors 2, 3, * * , Pn- 

Western describes his experiences in this process of testing for small factors and 
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advises c = 1 as giving the best results. Certainly any factor of c cannot occur in 
b without being in a as well, which means it could be cancelled. Nevertheless, since 
we are making up our values of a, it is worth looking near several values of cN, in 
the hope of finding a very small value of b,-such a small value may compensate for 
the loss of one small prime as a possible factor of b. Experience is needed. 

The suggested approach is then: 
(i) Manufacture numbers a from primes Pk with k > m, e.g., Pm = 31, 

m = 11, in the example below. Also k A n; we used Pn = 73 below, but retained 
a few more in the search, and kept what were needed. Then all primes Pn, n < 11, 
are exclusively available as factors of b (except for factors of c), and also other 
factors not used in a. The probability of success in obtaining an An-number depends 
substantially on the size of the smallest primes available as factors. 

We may make a table of numbers for a by 
(a) Making a first list of primes Pm to Pn, and beyond. 
(b) Develop a second list of products of two primes, by cross-multiplying the 

first list with itself and sorting. 
(c) Repeat the process to get a list of numbers with three factors-or maybe go 

directly to four factors. 
Continue until numbers of order </N, starting less than <IN, are obtained, to 

give a relatively permanent and rather big stock. 
(d) Finally combine two of the final lists to give a list for immediate use, of 

numbers near N, and near 2N, and 3N, etc. 
Details need experiment and investigation; for example it may be better for very 

big numbers, to combine three lists near N"3. 
The magnitude of the task suggested also needs investigation. 
(ii) The next step is to obtain from the final combination of lists, a number a 

near cN and hence b = cN - a, and test this for factors < pn. Discard if a residual 
factor remains. It may however be useful (a) not to decide the value of Pn too soon, 
and (b) to record relations involving a single extra factor in a range not greatly exceed- 
ing Pn, in the hope of repetition, and so elimination, later. 

(iii) When n + e successful relations involving two An-numbers have been 
found, carry out the reduction of the index relations, to get those involving just one 
index. This will give X(N), or maybe a super- or sub-multiple adequate for the final 
factorisation process. 

13. A particular case is now described, to give a preliminary idea of the method 
and work involved. 

Take 

N= 50059, Pm =p,, = 31, Pn = 109, later 73. 

The two-factor list contains 64 numbers, from 312 = 961 to 592 = 3481. The 
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three-factor list has 112 numbers from 313 = 29791 to 37279 = 108151. This 

covers N and 2N. 
Near 50059, there are 29 numbers in the list giving b between - 14502 

and + 18420 inclusive; of these 10 have maximum factor < 73. Near 2 x 50059 
there are 55 numbers giving b between - 14961 and + 8033; of these 13 have 
largest factor from 53 to 83 and 19 from 53 to 109. 

Thus we have 23 relations for the 21 primes to 73, or 22 if we include - 1. 
We hope this is enough. The relations used are (mod 50059) and in descending 
order of largest prime: 

31 - 43 - 71 + 3 - 5273 = 0 31253 = 2 - 19 - 23 
31 . 43 . 73 + 532 = 0 41253 + 325272= 0 

31241 + 2 - 732 = 0 31 37 - 47 = 2 - 527 11 

37267 + ? 5 23 - 73 = 0 473 = 3 - S - 13 - 19 

31 - 47 - 67 + 3 - 7217 = 0 31243 + 253 - 7 - 13 = 0 

37 - 41 - 67 = 32132 31 37 - 43 + 2 - 3241 = 0 

37 - 43 - 67 =11 - 19 - 31 31 - 432 = 223 - 5 - 112 

37 - 41 - 61 + 3 - 7 - 192 =0 37 - 432 = 2 - 3 - 7 - 19 - 23 

31 - 53 - 61 = 3 - S - 7 31 . 412 = 223319 

41 - 47 - 53 = 3 - 11 - 61 37 - 412 = 2 - 3 - 7 - 172 

41 - 43 - 61 = 335211 373 = 2 - 3311 

31 5 532 + 13 - 17 - 59 = 0 

The reduction of the equations is not shown; it is straightforward as in the ex- 
ample in Western and Miller (1968), though tedious-it would not be so on a computer! 
To estimate work involved, it is relevant to note that, using care to keep coefficients 
small, the first double-figure coefficient, 10, came when the largest prime involved 
was 31 (in equation 55). The coefficient first exceeds 50 when six primes, to 
p = 13, are left (equation 87). It is 60 when four primes are left (equation 104), 307 
when three are left (equation 130), 553 when two are left, and finally reaches 99008 x 
ind 2 0. In fact N = 113 443, and X(N) = 24752. Possibly a more careful re- 
duction would produce this. 

The main comment here is that large coefficients come only in the last few stages. 
The reduction is thus relatively easy numerically, and mostly single length, even for 
larger N. 

14. One problem remains. What is the probability that a number a is an An- 
number, with all factors < pn? This depends, of course, on which of the first n 
primes are actually available, and not otherwise excluded. 

In Western and Miller (1968) there are given, in Table 6, extensive counts fn(x) 
of An-numbers not greater than x. We may use this function to give an estimate of 
the probability that a "random" x is an An-number. Then, assuming that we need 
k such numbers of size up to this, we can estimate the number of trials we need in 
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finding them. In fact we need k numbers with probability fk(x)Ix of success in 

finding each, if we use primes up to Pk, to give relations for an elimination scheme. 

The approximate number of trials needed then is kx/fk(X). 

The table of fk(x) allows a thorough study of this function, which represents 

an amount of labour in some appropriate unit. We give below a typical set of values, 
for x= 106. 

x 106. Values of kx/fk(x) 

k Pk kX/f k Pk kX/f k Pk kX/f 

1 2 50000 20 71 381 40 173 319.6 
2 3 14085 41 179 319.6 

3 5 5917 30 113 328.3 42 181 319.6 
4 7 3142 31 127 326.5 43 191 319.9 
5 11 2056 32 131 324.9 44 193 320.2 
6 13 1461 33 137 323.6 45 197 320.4 
7 17 1133 34 139 322.4 46 199 320.7 
8 19 914 35 149 321.6 47 211 321.2 
9 23 772 36 151 320.9 48 223 322.0 

10 29 680 37 157 320.4 49 227 322.7 
11 31 608 38 163 320.0 50 229 323.4 
12 37 557 39 167 319.7 51 233 324.1 

This shows that for a given limit (here 106) there is an optimum value of k, for 

which the total number of trials needed for k equations is a minimum, here 320. 

There follows a table giving minimum kx/f, with corresponding k and Pk, 

for x = 103(1)8; the last two are values for n = 51, where they are still decreasing 

with k; we try to estimate better values. 

Minimum values of kn/fk(x) 

x k Pk kx/f x k Pk kx/f 
103 8 19 24 107 > 51 > 233 < 697 

104 13 41 61 108 > 51 > 233 < 1625 

105 24 89 143 Estimates 
106 41 179 320 107 65 313 (670) 

2 - 106 47 211 403 108 100 499 (1500) 

The ratios of kx/f as x increases tenfold seem to be diminishing towards 2. 

Thus a 10-fold increase in x corresponds to a 2-fold increase in the amount of work. 

This perhaps suggests a power of, x, between x1/3 and x1/4. 
The size of x, compared with N, depends on our success in finding values of 

a near cN; one hopes to light on values such that b is near NM/2 or maybe rather 

larger, with some regularity. We can then test only these, and the number of them 

needed is then represented by x = N'/2, which means perhaps N"/6 trials. But much 
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more work is needed both on actual trials and on estimating their number for numbers 
N of various representative trials. 

15. For further trials using fk(x), we cannot rely on extended actual counts, 
but may instead make use of an approximate expansion derived as indicated below: 

The function fn(x) satisfies the recurrence relation 

fn (X) :- fn -1 (x) + fn (XIPn ) 

since every An-number in the count either has Pn as a factor, which can be divided 
out, leaving a smaller An-number, or Pn is not a factor, which means we have an 

An -number. 
We can express the condition for an An-number in another way. An An-number 

counted in fn(x) is of the form 

pt p2 ... ptn _X 

or, taking logarithms (to any base) it is a solution of the linear Diophantine inequality 

11t1 + 12t2 + *t- + lntn -< log x = y 

where 1i is written for log pi. If we call the number of such solutions n(Jy), then 

fn(x) = )n(y) and the recurrence relation becomes 

On(y) = On-i(y) + MY I ). 

This is a form of difference equation in y, and we may expect at least an approximate 

solution in the form of a polynomial in y. 

Incidentally, the results may be expected to be independent of any particular 

interpretation or values of the constants ii. 
G. H. Hardy (1940, pp. 69ff) has proved that 

2? 21112 2 (11 12) og 
? 

from which we may deduce 

On (Y) = Xn(J) + o(yn l/log y) 

where 

n! 1112 .nXn(y) =Yn + ?2n(1 + 12+ ? + ? )yn-, 

The error term has been the subject of as yet unpublished investigations by 

Western and myself, with help from N. G. R. Sanders, R. M. Needham, and C. T. T. 

Scofield at the Cambridge University Mathematical Laboratory, to quite high limits; it 

seems considerably more restricted than suggested above. 

We were encouraged to proceed further, and write (to condense two stages of 

investigation) L(n) = fln 1 li, S(n) = Sin 1, 
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Y= Y(n) =y + ?12S(n), 4In(Y(n))= On(Y) 

and to assume 

n! L(n)cn(Y(n)) = YO (n)Yn(n) + 3 (n) y2(n)yn-2(n) 
n 
4 ey(n n-4(n) +*-. 

The difference equation becomes 

)n (Y(n)) -n (Y(n) - In) = {@n-1 (Y(n - I))}/nln 
or 

(D 2 n) n (D ( ) l n) {,Dn - l (Y(n- 1))}Inln. 

From this, by expanding in powers of Y(n - 1) and equating coefficients, and 
then solving the resulting difference equations, with initial condition 00(Y) = 1 for 
all y, we obtain 

yn (2 ) (n) yn- + 
n 

* 4 (S2 + 2S4 )yn-4 n! L(n)4In (Y) = n (n2 n ?n (5S~2 ? SY4 

n6 (35S3 + 42S* S* + 16S*) Yn-6 
636 2 24 6 

1 (n\(s* 4 +420S*2 S* ?2 324*)n- + 3( (175S + 320S? S + 84S2 ? 144S )Y'-8 
135 

22 4 26 48 

+ ?-- + error 

with S*r = Ini1 (l/21i)2r and Y(n)= Y. 
The error for D3(Y) and for D4(Y) has been studied, as was that in F2(Y), 

and remains small-a few units only-for as far as is likely to be needed for a long time. 
It is hoped to write a fuller account of the error investigations at a future time. 

Two further papers may help in the study of approximations to fn(x); these are N. G. 
de Bruijn (1951) and D. G. Hazlewood (1973). 

16. The net result of this discussion is that there seems to be some hope that a 
method of factorisation might be devised, needing effort of order CNA for a number 
N, with a maybe less than 14. This may be too optimistic, but it seems worth trying 
for. The original hope was for an effort of order C(log N)O, with ,B bounded, per- 
haps by 5 or so. It seems that C might be rather large. The variety of choice available 
in selecting the partition a + b = cN seems encouragingly large and unexplored. To 
sum up, the method seems worth further experiment. 

It is worth remarking that the process will readily provide, with little further 
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work, primitive roots and indices for the prime factors found for N, since congruences 
modulo N are also congruences modulo P if PIN. 

Western found the method the best he could devise for finding primitive roots 
and indices, working by hand, with desk machines. J. S. Fenton (unpublished) has 
produced a computer program to carry out the process as used by Western, for primes 

in the region of 50000 to 100000, i.e.,in the range to give an extension to Western and 

Miller (1968). This program works well, though the extension of published tables has 

not yet been carried out. 
New ideas and new recruits into this field would be welcome. 
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